
this manner, the ratio ~/~a for unifoz~n and nonuniform specimens, with m = i0, we obtain 
the value 1,055 for complex (3,1). In the same manner, we verify that complex (3,1) is 
greater than 1 for all 1,43~-~m < -. 

Thus, there exists a range of values of m, in which ~heory agrees qualitatively with 
experiment, end in this range there exists a value of m that ensures quantitative agreement. 

We consider the results obtained here as a significant indication of the existence of 
surface nonuniformity in solid bodies. 

LITERATURE CITED 

i. C. Kittel, Introduction to Solid State Physics, (1976). 
2. Tables of Physical Quantities (Handbook) [in Russian], Atomizdat, Moscow (1976). 
3. V.F. Babich and Yu. S. Lipatov, "Dynamic method for determining the mechanical proper- 

ties of a surface polymer layer," Mekh. Polim., No. 3 (1969). 
4. Yu. P. Stepanenko, "Dynamometric trapping system for testing specimens for uniaxial ten- 

sion," in: Plastics in Machine Construction and in Railroad Transport [in Russian], 
Transport, Moscow (1967). 

5. Yu. P. Stepanenko, "Differential method for measuring tension in polymers," Mekh. Polim. 
No. 3 (1974). 

6. G.P. Aleksandrova, "Contact problems in bending of a slab lying on an elastic founda- 
tion," Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 1 (1973). 

7. G.P. Aleksandrova, "Effect of surface tension forces on the contact rigidity," in: Cal- 
culation of Shells and Plates [in Russian], Rosgov-on-Don, Izd. RISI (1975). 

8. I.I. Vorovoch, V. M. Aleksandrov, and V. A. Babeshko, Nonclassical Mixed Problems in 
the Theory of Elasticity [in Russian], Nauka, Moscow (1974). 

SELF-MODELING PROBLEMS INTHE DYNAMIC BENDING OF BEAMS 

V. P. Yastrebov UDC 534.113:624.042+624.042.8 

The study of self-similar motions of continuous media is vary fruitful [i]. The set of 
self-similar problems is limited by restrictions on the dimensionalities of the characteristic 
quantities. In those cases when these requirements are satisfied, the mathematical aspect of 
the problem can be greatly simplified. 

In the present work, we examine the self-similar problems of dynamic bending of beams, 
satisfying the dynamic Bernoulli--Euler equation. For infinitely long beams, self-similar 
solutions and solutions including self-similar components are known [2-8]. All these solu- 
tions have been obtained, however, without using the properties of self-similarity. In the 
present work, we propose a general method that permits studying a wide class of self-similar 
solutions. Known self-slmilar solutions can be obtained as particular cases based on this 
method. In addition, methods are established for solving problems of bending of beams with 
moving supports, whose motion occurs within a regime that retains the self-similarity of the 
problem. We will refer to this regime as the self-similar regime of motion. The bending of 
a beam under the action of a force that moves along the beam in the self-slmilar regime indi- 
cated is investigated for the first time. 

The properties of self-similarity were used previously in [9] for studying the deforma- 
tion of membranes with movable boundaries. 

i. Let us examine the equation for bending of a beam 

EfO4w/Ox4+mOZw/Ot  ~ = q ( x , t ) ,  (i.i) 

where w is the deflection; t, time; x, coordinate; E, modulus of elasticity of the material; 
I, moment of inertia of a section; m, an adjustable mass; q, an adjustable load. 

Leningrad. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnickeskoi Fiziki, No. I, 
pp. 158-164, January-February, 1981. Original article submitted June 8, 1979. 
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Let us first consider the homogeneous equation. For the homogeneous equation, the 
deflection is a function of the following determining parameters: El, m, t, and x. From 
these parameters, it is possible to form only one independent dimensionless combination, 
which simultaneously includes the variables x and t. We write =his combination in the form 

~ =xI(2F~ VF), a= EZ/~ (1.2) 
The function obtained indicates =he self-slmilarity of the motion [i], For the inhomogeneous 
equation (i.i), the self-similarity of the solution is retained if the load q can be repre- 
sented in the form 

q = q,t~f (~), (l. 3) 

where q, is a constant; f(~), dimensionless function of the variable ~; and ~, an exponent. 

The appearance of a new dimensional quantity q,, independent of =he constants EI and m, 
does not destroy self-similarlty, since =he problem is linear and q, enters into the final 
expression as a factor. 

The boundary and initial conditions contain addltional dimensional quantities. For 
example, concentrated forces can act on sections of the beam or velocities can be given that 
vary as a power law function of time 

P = P,d, v = v,t ~, (1.4) 

where y and 6 are exponents; P, and v, are constant quantities. 

The dimensionalities of the cons=ants P, and v, must be independent of the dimension- 
alities of =he previously introduced quantities, in order that the problem remain self-similar. 
This is equivalent to imposing restrictions on =he magnitudes of the exponents 7 and 6. If 
in Eq. (i.i) the right side equals zero, =hen the one-dimensional constant, depending on q, and 
entering as a factor in the final solution, which can be used for satisfying an independent 
boundary or initial condition, is freed. In this case, in satisfylng one of conditions (1.4), 
one of =he exponents 7 or ~ can be chosen arbitrarily. The rest of the conditions must have 
dependent dimensionallties or be null conditions. 

The conditions of the problem cannot contain characteristic dimensions, which occurs for 
infinite and semiinflnlte beams. In addition, it is possible go give special moving boundary 
conditions, corresponding to self-slmilar regimes. We note that due go the linearity of Eq. 
(1.1) many nonself-slmilar solutions can be obtained by superposition of self-similar solutions. 

2. Self-similar solutions are sought in the form 

w = Ata~(~), (2 .1)  

where a is an exponent; A, a dimensional constant; ~ (~), a dimensionless function of the 
variable ~. Expression (2.1) is substituted into Eq. (i.i), in which the right side has the 
form (1.3). In calculating the derivatives, the variable ~ is viewed as a function of x and 
t. As a result of the substitution, an ordinary differential equation is obtained: 

~ v  _]_ 4~T,, + (t2 --  16=)~T' + 16=(= -- i)~ = i6](~), (2 .2)  

in which the derivatives are taken with respect to the variable ~. 

Here, it is necessary to set A = q,m-~ and ~ & B + 2. If, on the other hand, Eq. (2.2) 
is homogeneous, =hen =he quantity ~ and =he dimensionality A are determined from an additional 
condition (e.g., a boundary condition). 

For example, let a concentrated force act on =he section x 

P = P , h ( t ) ,  (2 .3)  

where h(t) is a Heaviside uni= function. In this case, the third derivative of the deflec- 
tion is discontinuous at =he point a= which =he force is applied: 

EI k Ox" I~+0 o~ ~ ~ - 0 ]  

Subs=ituting here (2.1), we obtain 

0A25A ( E l m ' )  ~/4 t ~-a''~ ( ~ "  (~ -F O) - -  ~ "  (~ - -  0)) = P , ,  . (2 .4)  
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where the variable ~ has the meaning of the corresponding coordinate x of the point of appli- 
cation of the force. The conditions, allowing for the transition from the coordinate x to the 
specific value of ~ in (2.4), are indicated in what follows. Expression (2.4) must give the 
condition for ~"' which does not explicitly depend on time and which does not have any dimen- 
sionality. From this it follows that a = 1.5, [A] = [P,][EIma] -~/~. Here, the square brackets 
indicate the dimensionality of the corresponding quantity. The choice of the quantity A, with 
the exception of the dimensionali~y, is arbitrary, since in what follows it can be combined 
with an arbitrary integration constant for Eq. (2.2). In the case being examlned~ the con- 
stant (A) can be chosen so that in (2.4) the discontinuity in the derivative ~"' would be 
equal to unity. From here it follows that 

A = 8P,(EIm~) -~. (2.5) 

In what follows, we will investigate Eq. (2.2) without the right side, omitting the word 
homogeneous in referring to it. 

The solution of (2.2) was sought by substituting an expansion in powers of ~. The series 
so obtained can be expressed for the most useful values of u in terms of trigonometric func- 
tions and Fresnel integrals [I0] 

2 ~ S (~) --  sin y2dg, C (~) . . . .  cos y"dg. 
V ~  o V -~-~ 

The most widely used values of ~ are u = 1.5; I; 0.5. These values correspond to the action 
of a concentrated force (u = 1.5) on the beam, moment (~ = 1), and setting the value of the 
velocity in the section of the beam (~ = 1), varying in time according to the unit function 
[2-4]. For pulsed actions [6], solutions of (2.2) may be required with ~ = 0.5. 

Let us write the fundamental system of solutions for (2.2) for the values of ~ indicated: 

for ~ = 1.5 

~ = - ~c(~) + ~5 V~s(~) + ~ s~n ~ 4- cos ~, ~ = ~, 

% = -6- [ ] f l2n~ S(~) 4- 1.5]/2-~" ~C (~) @ ~ c o s ~  ~ -  sin~Z], q~ ~ ;  ( 2 . 6 )  

for a = 1 

~1 = l ,  ~ = 0 . 5 [ ~ n ~ 2 S ( ~ )  4- 0.5 ~-2~C(~) + ~ cos ~-1, (2.7) 
% = 0-5~ 2, ~4 = 0.25[ ~ 2 - ~ C ( ~ )  - -  0,5 ~ S ( ~ )  - -  ~ sin ~ l ;  

for ~ = 0.5 

~1 = K ~ s ( ~ )  + cos ~ ,  % = ~, 

% = 0.5[ ~ C ( ~ )  - -  sin ~ ] ,  ~4 = 0 . t 2 5 { 2 ~ [ 8 ( ~ ) ]  ~ 4- 2n~[C(~)] ~ + 2V2-~[S(~) cos ~ - -  C(~) sin ~ ] } . ( 2 . 8 )  

We n o t e  t h a t  t h e  s o l u t i o n  o f  ( 2 . 7 )  and t h e  f i r s t  t h r e e  s o l u t i o n s  ( 2 . 8 )  e q u a l  t h e  d e r i v a t i v e s  
with respect to ~ of (2.6) and (2.7), respectively, to within an arbitrary factor. 

The particular solutions (2.6)-(2.8) are chosen so that for ~ = 0 the values of these functions 
and their third-order derivatives vanish and equal unity, except for the values indicated below: 

_ .  I 0 = tt = ru ~(o) %()  ~(o) ~(o)=~. 

This choice of functions simplifies the satisfaction of the boundary conditions at ~ = 0 by 
the solutions. 

In studying the bending of infinite and semlinfinite beams, it is necessary to use solu- 
tions that approach zero for ~ + ~. These solutions can be obtained by using a linear combi- 
nation of the fundamental system of solutions written. For example, for ~ = 1.5, these solu- 
tions will be 

% = (P1 - -  0 . 75 ] /2~% @ 3 ~ / 2 n ~  = 

= - - ] / 2 ~ a [ C ( ~ )  - -  0.5] 4- ~[ .5] /2~[S(~)  - -  0.5.] 4- ~ sin ~2 4- ( 2 . 9 )  

4- cos ~2, ~6 = 6% - -  0.75]/2a(p2 - -  3V2g(p4 = 

= ] / ~ [ s ( ~ )  - 0.51 + 1 , 5 V ~ [ c ( ~ )  - 0.51 + ~ cos ~2 - sic ~ .  
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The results obtained permit, without difficulty, reproducing known self-slmilar solu- 
tlons. For example, the solution of the problem of bending of an infinite beam under the 
action of a force (2.3), examined in [3], can be written in the form 

s 

w =  Ez ( 2 . l O )  

In obtaining (2.10), we used the general solution of Eq. (2.2) for u = 1.5, approaching 
zero for ~ § ~: 

= Cb~b+Co~6~ 

where Cs and Cl are arbitrary constants, determined from the boundary conditions at ~ = 0. 

' 3. The proposed method does not permit obtaining solutions for beams with finite length. 
However, it is possible to consider problems in which the supports are moving. The law for 
the displacement of the supports must be such that it does not introduce additional quanti- 
ties with independent dimensionallties. The following law of motion satisfies this condi- 
tion: 

�9 = b2  -Y T, (3 .1 )  

where b is a dimensionless constant, characterizing the rate at which the supports are dis- 
placed. 

Condition (3.1) determines the boundary conditions for Eq. (2.2) for the value ~ = b. In 
other words, in the region of the variable ~, we can consider the bending of some fictitious 
beam whose deformation is described by the more complicated equation (2.2). In sections 

= b,, b,, b,, ... of this beam, there are supports for applied forces and moments. In 
addition, a distribution of the loads can be given. The methods for finding the solutions 
for a fictitious beam do not essentially differ from the methods of calculating static bend- 
ing of beams [ii]. 

Transforming again to the variables x and t, we obtain a Bernoulli--Euler beam with 
moving supports and moving loads, running from the point x = 0 in the self-similar regime, 
determined by equations of the form (3.1). 

Many works are concerned with questions of bending of beams under the action of moving 
loads. Numerical methods can be used in obtaining solutions [12]. For infinite beams 
(taking into account the elastic foundation and damping), analytic solutions are sought for 
action of constant loads, running along beams with constant velocity. In this case, it is 
possible to construct an asymptotically exact solution for long times from the moment that 
the loads begin to move [13, 14]. However, the initial transient process is difficult to 
study and requires considerable computational work. 

The application of self-slmilar solutions permits constructing a simple exact solution 
of the problem of a running load from the very beginning of its motion. In this case, the 
load can vary with time according to a power law. 

Let us examine the bending of an infinite beam under the action of a concentrated force, 
moving along the beam from the origin of the coordinate x = 0 according to the law (3.1). 
This problem can be split up into two problems. In these problems, two forces identical 
in magnitude move away from the origin of coordinates in opposite directions, and in addi- 
tion, in the first problem (symmetrical problem) the forces are directed in the same direc- 
tion, while in the second problem in opposite directions (antisymmetrical problem). It is 
easy to formulate the boundary conditions at x = 0 for each problem. The antisymmetrical 
problem corresponds to free resting on a rigid support. In the symmetrical problem, limita- 
tions are imposed on the angle of rotation, which must remain equal to 0. 

Let us examine the behavior of this solution for the antisymmetrlc problem. We assume 
that the force varies in time according to (2.3). We choose null initial conditions. The 
deflection is sought in the form (2.1), where u = 1.5, while the coefficient (A) is deter- 
mined by (2.5). Substituting (2.1) into the boundary conditions of the problem for x = 0 
and x + ~, we obtain 

= = 0 = 0), 0 (3.2) 
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In the section beneath the force, the deflection and its first and second derivatives 
are continuous, i.e., ~j ~', and ~" are continuous, while the third derivative is discon- 
tinuous and, taking into account (2.4) and (2.5), satisfies 

~'"(b + O) - -  ~" '@ - - 0 )  = 1. 

Let use use the particular solutions (2.6) and (2..9) for ~ ~ 1.5. The general solution 
is written in the form 

= C~% -1- C4% (~ .~ b), ~ = Cb% -1- C~% (~/> b). (3 .3 )  

The first and second solution (3.3) satisfy boundary conditions (3.2), respectively, at 
= 0 and ~ + -. The arbitrary constants Caj C~, C~, and C, are found from the above formu- 

lated conditions for the Joining of the deflection and its derivatives at the points of appli- 
cation of the force (6 = b). 

The calculations were carried out for b = 0.8 and 2. In doing the calculatlonsD we used 
the tables in [15]. Figure i shows the graphs of the function ~(~) for the antisymmetrical 
problem (dashed curves) and the total solution of the antisymmetrlcal and symmetrical problems 
(continuous curves). The total solution corresponds to the action of an infinite unsupported 
beam of the doubled force 2P, moving from the section x = 0 in one direction. For comparison 
according ~o formula (2.10), we also compute the curve ~ for an infinite beam with action of 
a stationary force 2Pc (b ~ 0). 

The bending moment equals 
I 

i = El a~-~ ~ = 0 25EiAt~-~a-~ V = 2P, ~ VF~". 
~x 2 

The curves ~" are constructed in Fig. 2. The curves are labeled in the same manner as 
in Fig. i. The curves shown in Figs. 1 and 2 indicate the fact that as the rate at which the 
forces are displaced in the self-similar regime increases, the deflection and bending moments 
decrease. The motion of the force along the beam occurs more rapidly than the increase in the 
deflection, and in addition, for velocities corresponding to b > 2, the deflection under the 
force is close ~o zero. The bending moment decreases rapidly under the force with increasing 
b. However, the bending moment in the precursor (wave, traveling in front of the force) de- 
creases more slowly. 

Comparison of the solutions of the symmetrical and antisymmetrlcal problems shows that 
for b > 2 the nature of the boundary conditions on the support at x = 0 has little effect 
on the deformation state of the beam in the region of application of the force. 

As the rate of displacement of the force increases (b > 2) computational difficulties 
arise, related to ~he necessity of calculating small differences in functions (2.9) and ~heir 
derivatives when using these functions in (3.3). In order to simplfy the calculations, let 
us transform Eq. (2.2). We introduce the new variable 

~,  = r  - -  b. 
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For the new variable, the equation takes the form 

~ v  -6 4~" ([ ,  + b) ~ + (t2 - -  i6a) ~' ([ ,  + b) + t6a(a  - -  t) ~ = O. (3 .4 )  

Here, the derivatives are taken with respect to the variable ~,. 

If I~*l << b, then ~, + b = b and Eq. (3.4) transforms into a linear differential equa- 
tion with constant coefficients, whose solution is elementary. For u = 1.5, Eq. (3.4) has 
the form 

~ v - p  4 b ' ~ " - -  ~2 b ~ ' +  12~ = O. (3 .5 )  

In searching for the deformation of the beam in the vicinity of a moving force instead 
of ~ ~ and ~e in (3.3) we used two corresponding particular solutions of Eqs. (3.5). The cal- 
culations show that the use of the approximate Eq. (3.5) with b = 2 still gives a significant 
error for the deflection and bending moment in the region of application of the force, but as 
the magnitude of b increases, the error rapidly decreases. 

Figure 3 illustrates ~ (curve 1) and ~" (curve 2) in the region of application of a 
moving force P, with b = 5. The solid line shows the exact solution and the dashed line cor- 
responds to the use of the approximate Eq. (3.5). The graphs indicate the good agreement of 
the solutions. 

In conclusion, we note that the use of concepts of self-similar regimes of motion of 
moving loads may turn out to be useful in studying other problems in mathematical physics, 
which admit self-similar solutions and the possibility of introducing moving sources of 
perturbations. 
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